Media Partners

  • Scientific American
  • TOR

Let the contest begin...

Schrödinger dreamed up a cat that, thanks to quantum physics, is half-alive and half-dead. Einstein worried about spooky action at a distance. Now Google is trying to build a quantum computer and we can communicate secretly using quantum particles. This is not even a century of progress in quantum physics. It sounds like science fiction, but that’s your job. We invite you to pick up the threads of this story and tell a new tale. 

Surprise us. Thrill us. Move us. Entertain us. Take inspiration from quantum theory to write flash fiction: a story no longer than 1000 words. Visit our inspiration pages for help getting started. You have until 11:59:59 PM ET on 1 December 2015 to enter.


By Jazzlin Taumasina Escovar
November 28, 2015
What could be more inspiring than the first sighting of a supernova?
By Jazzlin Taumasina Escovar
November 28, 2015
It's unfortunate for Carl that he's stuck in this version of reality...
By Lily Do
November 27, 2015
Phineas is ready to flip the switch on the machine that's been his life's work
By Kristy Evangelista
November 27, 2015
Two orphans with super powers are entangled. One becomes a hero, the other...
By Norm Richter
November 27, 2015
Eugene Wigner is worried. Yogi Berra's mind is grinding the wheels of reality
By Richard Rogow
November 27, 2015
Not only was the demon very perverse but he also aspired to shift the Universe in reverse...
By Delaney Green
November 27, 2015
Half the people on Earth are infected, but Rebecca is ready to sacrifice herself to save them
By William Wood
November 27, 2015
Time, people, the schooner sailed on, Melanie could let them all slip away

Never miss the news

We'll be sending regular email updates during the competition. Sign up here if you'd like to receive them. You'll hear about new quantum discoveries, our mini-competitions and people's entries to the contest. We won't share your email address with anyone else and you can unsubscribe anytime. 

Subscribe to Quantum Shorts newsletter

Quantum Shorts newsletter
Enter your email address to receive competition updates
To prevent automated spam submissions leave this field empty.

Scientific Partners

Quantum Theory: A to Z

I is for ... Information

Many researchers working in quantum theory believe that information is the most fundamental building block of reality.

C is for ... Cryptography

People have been hiding information in messages for millennia, but the quantum world provides a whole new way to do it.

C is for ... Computing

The rules of the quantum world mean that we can process information much faster than is possible using the computers we use now.

U is for ... Universe

To many researchers, the universe behaves like a gigantic quantum computer that is busy processing all the information it contains.

J is for ... Josephson Junction

This is a narrow constriction in a ring of superconductor. Current can only move around the ring because of quantum laws; the apparatus provides a neat way to investigate the properties of quantum mechanics.

W is for ... Wavefunction

The mathematics of quantum theory associates each quantum object with a wavefunction that appears in the Schrödinger equation and gives the probability of finding it in any given state.

B is for ... Bose-Einstein Condensate (BEC)

At extremely low temperatures, quantum rules mean that atoms can come together and behave as if they are one giant super-atom.

H is for ... Hidden Variables

One school of thought says that the strangeness of quantum theory can be put down to a lack of information; if we could find the “hidden variables” the mysteries would all go away.

M is for ... Multiverse

Our most successful theories of cosmology suggest that our universe is one of many universes that bubble off from one another. It’s not clear whether it will ever be possible to detect these other universes.

G is for ... Gravity

Our best theory of gravity no longer belongs to Isaac Newton. It’s Einstein’s General Theory of Relativity. There’s just one problem: it is incompatible with quantum theory. The effort to tie the two together provides the greatest challenge to physics in the 21st century.

A is for ... Alice and Bob

In quantum experiments, these are the names traditionally given to the people transmitting and receiving information. In quantum cryptography, an eavesdropper called Eve tries to intercept the information.

E is for ... Entanglement

When two quantum objects interact, the information they contain becomes shared. This can result in a kind of link between them, where an action performed on one will affect the outcome of an action performed on the other. This “entanglement” applies even if the two particles are half a universe apart.

T is for ... Teleportation

Quantum tricks allow a particle to be transported from one location to another without passing through the intervening space – or that’s how it appears. The reality is that the process is more like faxing, where the information held by one particle is written onto a distant particle.

S is for ... Superposition

Quantum objects can exist in two or more states at once: an electron in superposition, for example, can simultaneously move clockwise and anticlockwise around a ring-shaped conductor.

V is for ... Virtual particles

Quantum theory’s uncertainty principle says that since not even empty space can have zero energy, the universe is fizzing with particle-antiparticle pairs that pop in and out of existence. These “virtual” particles are the source of Hawking radiation.

R is for ... Reality

Since the predictions of quantum theory have been right in every experiment ever done, many researchers think it is the best guide we have to the nature of reality. Unfortunately, that still leaves room for plenty of ideas about what reality really is!

X is for ... X-ray

In 1923 Arthur Compton shone X-rays onto a block of graphite and found that they bounced off with their energy reduced exactly as would be expected if they were composed of particles colliding with electrons in the graphite. This was the first indication of radiation’s particle-like nature.

M is for ... Many Worlds Theory

Some researchers think the best way to explain the strange characteristics of the quantum world is to allow that each quantum event creates a new universe.

U is for ... Uncertainty Principle

One of the most famous ideas in science, this declares that it is impossible to know all the physical attributes of a quantum particle or system simultaneously.

W is for ... Wave-particle duality

It is possible to describe an atom, an electron, or a photon as either a wave or a particle. In reality, they are both: a wave and a particle.

R is for ... Radioactivity

The atoms of a radioactive substance break apart, emitting particles. It is impossible to predict when the next particle will be emitted as it happens at random. All we can do is give the probability that any particular atom will have decayed by a given time.

B is for ... Bell's Theorem

In 1964, John Bell came up with a way of testing whether quantum theory was a true reflection of reality. In 1982, the results came in – and the world has never been the same since!

Y is for ... Young's Double Slit Experiment

In 1801, Thomas Young proved light was a wave, and overthrew Newton’s idea that light was a “corpuscle”.

S is for ... Schrödinger’s Cat

A hypothetical experiment in which a cat kept in a closed box can be alive and dead at the same time – as long as nobody lifts the lid to take a look.

P is for ... Probability

Quantum mechanics is a probabilistic theory: it does not give definite answers, but only the probability that an experiment will come up with a particular answer. This was the source of Einstein’s objection that God “does not play dice” with the universe.

L is for ... Large Hadron Collider (LHC)

At CERN in Geneva, Switzerland, this machine is smashing apart particles in order to discover their constituent parts and the quantum laws that govern their behaviour.

D is for ... Dice

Albert Einstein decided quantum theory couldn’t be right because its reliance on probability means everything is a result of chance. “God doesn’t play dice with the world,” he said.

I is for ... Interferometer

Some of the strangest characteristics of quantum theory can be demonstrated by firing a photon into an interferometer: the device’s output is a pattern that can only be explained by the photon passing simultaneously through two widely-separated slits.

N is for ... Nonlocality

When two quantum particles are entangled, it can also be said they are “nonlocal”: their physical proximity does not affect the way their quantum states are linked.

L is for ... Light

We used to believe light was a wave, then we discovered it had the properties of a particle that we call a photon. Now we know it, like all elementary quantum objects, is both a wave and a particle!

Z is for ... Zero-point energy

Even at absolute zero, the lowest temperature possible, nothing has zero energy. In these conditions, particles and fields are in their lowest energy state, with an energy proportional to Planck’s constant.

G is for ... Gluon

These elementary particles hold together the quarks that lie at the heart of matter.

T is for ... Tunnelling

This happens when quantum objects “borrow” energy in order to bypass an obstacle such as a gap in an electrical circuit. It is possible thanks to the uncertainty principle, and enables quantum particles to do things other particles can’t.

O is for ... Objective reality

Niels Bohr, one of the founding fathers of quantum physics, said there is no such thing as objective reality. All we can talk about, he said, is the results of measurements we make.

F is for ... Free Will

Ideas at the heart of quantum theory, to do with randomness and the character of the molecules that make up the physical matter of our brains, lead some researchers to suggest humans can’t have free will.

Q is for ... Quantum biology

A new and growing field that explores whether many biological processes depend on uniquely quantum processes to work. Under particular scrutiny at the moment are photosynthesis, smell and the navigation of migratory birds.

R is for ... Randomness

Unpredictability lies at the heart of quantum mechanics. It bothered Einstein, but it also bothers the Dalai Lama.

K is for ... Kaon

These are particles that carry a quantum property called strangeness. Some fundamental particles have the property known as charm!

S is for ... Schrödinger Equation

This is the central equation of quantum theory, and describes how any quantum system will behave, and how its observable qualities are likely to manifest in an experiment.

A is for ... Act of observation

Some people believe this changes everything in the quantum world, even bringing things into existence.

A is for ... Atom

This is the basic building block of matter that creates the world of chemical elements – although it is made up of more fundamental particles.

P is for ... Planck's Constant

This is one of the universal constants of nature, and relates the energy of a single quantum of radiation to its frequency. It is central to quantum theory and appears in many important formulae, including the Schrödinger Equation.

Q is for ... Qubit

One quantum bit of information is known as a qubit (pronounced Q-bit). The ability of quantum particles to exist in many different states at once means a single quantum object can represent multiple qubits at once, opening up the possibility of extremely fast information processing.

H is for ... Hawking Radiation

In 1975, Stephen Hawking showed that the principles of quantum mechanics would mean that a black hole emits a slow stream of particles and would eventually evaporate.

D is for ... Decoherence

Unless it is carefully isolated, a quantum system will “leak” information into its surroundings. This can destroy delicate states such as superposition and entanglement.

Judge Spotlight

Colin Sullivan

Colin is editor of Nature Futures, the award-winning science-fiction column in the science journal Nature. He first joined Nature in 2000 as Chief Subeditor. Since taking over the Futures reins in 2012, he has overseen the launch of Nature Futures 2, an anthology of 100 stories from 100 authors. He also runs the Future Conditional blog, where Futures authors tell the story behind their story. When not wrestling with the placement of hyphens, he has a tendency to stare at Roman ruins — especially those of Pompeii and Herculaneum — and to pore over genealogical records.

Latest Tweets